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In this paper we propose an explicit two-level conservative scheme based on a TE/TM like
splitting of the field components in time. Its dispersion properties are adjusted to acceler-
ator problems. It is simpler and faster than the implicit version [I. Zagorodnov, T. Weiland,
TE/TM scheme for computation of electromagnetic fields in accelerators, J. Comput. Phys.
207 (2005) 69]. It does not have dispersion in the longitudinal direction and the dispersion
properties in the transverse plane are improved. The explicit character of the new scheme
allows a uniformly stable conformal method without iterations and the scheme can be
parallelized easily. It assures energy and charge conservation. A version of this explicit
scheme for rotationally symmetric structures is free from the progressive time step reduc-
ing for higher order azimuthal modes as it takes place for Yee’s explicit method used in the
most popular electrodynamics codes.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In particle accelerators based on radio frequency or laser technology a preferred direction–direction of motion is well de-
fined. The electromagnetic field changes very fast in this direction and it is extremely important to eliminate the numerical
dispersion error in the direction of motion for all frequencies. If the numerical dispersion is suppressed then a quite coarse
mesh and moderate computational resources can be used to reach accurate results. It was shown, for example, in wakefield
calculations by Novokhatski [2] and in laser–plasma interaction simulations by Pukhov [3].

The simplest solution is to use the conventional Yee’s FDTD scheme with the direction of motion aligned along a grid diag-
onal. This approach was considered, for example, in [4]. To send the bunch or laser pulse along the grid diagonal is quite
inconvenient for numerical realization and increases geometrical errors in approximation of cylindrical accelerator elements
parallel to the direction of the motion. Another drawback of this approach is the requirement of an equidistant mesh with
the same steps in all directions.

An alternative solution is to develop a scheme without dispersion along an axis. Such methods are described in [2,3] for
two dimensional and in [1,5–7] for three dimensional problems. However, all these approaches lose in simplicity, efficiency
and memory demands compared with Yee’s scheme [8].

In this paper we present a scheme which competes with Yee’s algorithm. The scheme does not have dispersion in the axis
direction. It is based on a TE/TM (‘‘transversal electric–transversal magnetic”) like splitting of the field components in time. It
is simpler and faster than the implicit version, introduced earlier in [1]. The numerical effort is scaled as 5/3 compared to
Yee’s algorithm for the same time step. But the explicit scheme allows a larger time step than the Yee’s algorithm. With such
choice the explicit TE/TM scheme requires only �18% more computational time. The memory demands are the same. The
explicit character of the new scheme allows for the uniformly stable conformal method [9] to reach the second order con-
vergence and the scheme can be parallelized easily.
. All rights reserved.
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A version of this explicit scheme for rotationally symmetric structures is free from the progressive time step reducing for
higher order azimuthal modes as it takes place for conventional Yee’s Finite Difference Time Domain (FDTD) method used in
the most popular accelerator codes [10].

2. Space discretization and matrix notation

In the following we consider a Cauchy problem for Maxwell’s equations:
Fig. 1.
step.
r� ~H ¼ o

ot
~Dþ~j; r�~E ¼ � o

ot
~B;

r �~D ¼ q; r �~B ¼ 0;
~H ¼ l�1~B; ~D ¼ e~E; x 2 X;
~Eðt ¼ 0Þ ¼~E0; ~Hðt ¼ 0Þ ¼ ~H0; x 2 X;

~n�~E ¼ 0; x 2 oX;

ð1Þ
where ~E0; ~H0 is an initial electromagnetic field in the domain X ¼ X [ oX with boundary oX.
It follows from (1) that the continuity equation holds
o

ot
qþr �~j ¼ 0 ð2Þ
and the energy law is fulfilled
o

ot
w ¼ r � ð~E� ~HÞ �~j �~E; w ¼ 0:5ð~E � ~Dþ~B � ~HÞ: ð3Þ
Following the matrix notation of the finite integration technique (FIT) [11], the Cauchy problem can be approximated by
the time-continuous matrix equations on a grid doublet (G; ~G)
C e
_
¼ � d

dt
b
_
_

; C� h
_

¼ d
dt

d
_
_

þ j
_
_

;

S b
_

¼ 0; ~S d
_
_

¼ q

ð4Þ
completed by the discrete form of the material relations (constitutive equations)
e
_
¼Me�1 d

_
_

; h
_

¼Ml�1 b
_
_

with the discrete inverse permittivity matrix Me�1 and the inverse permeability matrix Ml�1 . The asterisk in Eq. (4) and later
on denotes the adjoint operator. In the following the material matrices are assumed to be real and symmetric.On Cartesian
{x,y,z}-coordinate grids (like the Cartesian grid shown in Fig. 1) with an appropriate indexing scheme the curl matrix has a
3 � 3 block structure [11]:
C ¼
0 �Pz Py

Pz 0 �Px

�Py Px 0

0
B@

1
CA; S ¼ ðPx Py Pz Þ; ~S ¼ ð�P�x �P�y �P�z Þ:

_

With changing of variables e ¼M�1=2
e�1 e

_
;h ¼M�1=2

l�1 h
_

; j ¼ c�1M1=2
e�1 j

_

; s ¼ ct, system (4) reduces to the skew-symmetric one
Positions of a relativistic charged particle in the FIT grid in different moments of time. The scaled time step is chosen equal to the longitudinal mesh
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d
ds e ¼ C�0hþ j;

d
dsh ¼ �C0e; Shh ¼ 0; See ¼ q ð5Þ
with new ‘‘curl” and ‘‘div” operators
C0 ¼ c�1M1=2
l�1 CM1=2

e�1 ¼
0 �P0

z P0
y

P1
z 0 �P0

x

�P1
y P1

x 0

0
BB@

1
CCA

Se ¼ �P�xM�1=2
e�1

x
�P�yM�1=2

e�1
y

�P�zM�1=2
e�1

z

� �
¼ ðPe

x Pe
y Pe

z Þ;

Sh ¼ PxM�1=2
l�1

x
PyM�1=2

l�1
y

PzM�1=2
l�1

z

� �
¼ ðPh

x Ph
y Ph

z Þ:
System (5) is a time-continuous and space-discrete approximation of problem (1). As easy to see [11] semi-discrete ana-
logues of conservation laws (2) and (3) hold
d
ds

qþ Sej ¼ 0;
d

ds
Shh ¼ 0;

d
ds

W ¼ �he; ji; W ¼ 0:5½eT eþ hT h�:
ð6Þ
The next step is a discretization of the system in time. The field components can be split in time and the ‘‘leap-frog”
scheme can be applied. With ‘‘electric/magnetic” splitting a well-known Yee’s scheme [8] will be obtained. In the following
we consider alternative TE/TM schemes.

3. Dispersion of Yee’s scheme

Suggested by Yee [8], the E/M (‘‘electric–magnetic”) splitting of the field components yields the explicit FDTD scheme (E/
M scheme)
enþ0:5 ¼ en�0:5 þ DsC�0hn � Dsjn
;

hnþ1 ¼ hn � DsC0enþ0:5;
ð7Þ
where Ds is the time step and the update of the electric components is shifted by 0.5Ds relative to the update of the mag-
netic components.On equidistant mesh the scheme has second order local approximation error in homogeneous regions,
OðkD~rk2 þ Ds2Þ, D~r ¼ ðDx;Dy;DzÞT . The scheme is stable in vacuum if the next relation [12]
Ds 6 ðDx�2 þ Dy�2 þ Dz�2Þ�0:5 ð8Þ
on time step holds.
However, the phase velocity of discrete wave modes can differ from the light velocity by an amount varying with the

wavelength, direction of propagation in the grid and grid discretization.The dispersion relation of this scheme in free space
has the form [12]
sin2 X
Ds2 ¼

sin2 Kz

Dz2 þ sin2 Kx

Dx2 þ sin2 Ky

Dy2 ; ð9Þ
where X = 0.5xDs/c, Kx = 0.5kxDx, Ky = 0.5kyDy, Kz = 0.5kzDz. With an equidistant mesh, Dx = Dy = Dz, a homogenous mate-
rial and the time step equal to the right-hand side of inequality (8), the scheme has zero dispersion along the grid diagonals.
Hence, the zero dispersion in a desired direction can be achieved by a rotation of the mesh. However, this approach awakes
limitations on discretization: the only reasonable choice in this case is to take equal mesh steps in the all three directions.
The next difficulty arises with the attempt to use a conformal method [9].Let us consider a calculation of electromagnetic
fields excited by a Gaussian bunch of RMS width r which moves in the z-direction through a structure of length L. A self-
field of the relativistic bunch has only transverse field components [13] and it is like a plane wave. For the plane wave in
z-direction dispersion relation (9) simplifies to
sinð0:5kDzÞ
0:5Dz

¼ sinð0:5Dsx=cÞ
0:5Ds

: ð10Þ
The numerical wave number k differs from the analytical one by some value dk and the Taylor expansion of the last equation
up to the first order in dk reads
dk � 1
3!

x
c

� �3 Dz
2

� �2

� Ds
2

� �2
 !

ð11Þ
The dispersion error could disappear only when the time step is equal to the mesh step: Ds = Dz. But it contradicts stability
condition (8). Hence, for any time step the Yee’s scheme has a dispersion error in the z-direction of the order



M. Dohlus, I. Zagorodnov / Journal of Computational Physics 228 (2009) 2822–2833 2825
dk � O
x
c

� �3
Dz2

� �
:

The Gaussian bunch contains high frequencies up to the frequency x � c/r. Hence, for the structure of length L the phase
error will be of the order
L � dk � O Lr�3Dz2� �
ð12Þ
The last equation means that Yee’s scheme [8] demands a very fine mesh for short bunches and long structures with the
mesh step
Dz	 r3=2L�0:5: ð13Þ
In the next section we introduce a scheme without dispersion error in the z-direction. For this scheme the mesh step is
independent from the structure length L and is related only to the first power of the bunch length
Dz	 r: ð14Þ
4. TE/TM scheme

4.1. Implicit FDTD method based on ‘‘transversal electric–transversal magnetic” splitting of the field components in time

Let us rewrite scheme (5) in an equivalent form
d
ds

u ¼ T0uþ Lvþ ju;
d

ds
v ¼ T1v � L�uþ jv ; ð15Þ
where
Ti ¼
0 0 �Pi

y

0 0 Pi
x

ðPi
yÞ
� �ðPi

xÞ
� 0

0
BB@

1
CCA; L ¼

0 P0
z 0

�P1
z 0 0

0 0 0

0
B@

1
CA;

u ¼
hx

hy

ez

0
B@

1
CA; v ¼

ex

ey

hz

0
B@

1
CA; ju ¼

0
0
�jz

0
B@

1
CA; jv ¼

�jx

�jy

0

0
B@

1
CA:
Applying the TE/TM splitting [1] of the field in time to system (15), the following numerical scheme is obtained:
unþ0:5 � un�0:5

Ds
¼ T0

unþ0:5 þ un�0:5

2
þ Lvn þ jn

u;
vnþ1 � vn

Ds
¼ T1

vnþ1 � vn

2
� L�unþ0:5 þ jnþ0:5

v : ð16Þ
Scheme (16) is a two-layer scheme
B
ynþ1 � yn

Ds
þ Ayn ¼ fn

; ð17Þ
where
B ¼
I� aT0 0

2aL� I� aT1

� �
; A ¼

�T0 �L
L� �T1

� �
;

yn ¼ un�0:5

vn

 !
; fn ¼

jn
u

jnþ0:5
v

 !
;a ¼ 0:5Ds:
We study the stability of scheme (17) by the energy inequalities method. Let us take the inner product of both sides in Eq.
(17) with yn+1 + yn:
hBðynþ1 � ynÞ; ynþ1 þ yni þ 2ahAyn; ynþ1 þ yni ¼ h2afn
; ynþ1 þ yni:
Using the formula
yn ¼ 0:5ððynþ1 þ ynÞ � ðynþ1 � ynÞÞ
we rewrite the last relation in the form
h½B� aA�ðynþ1 � ynÞ; ynþ1 þ yni þ ahAðynþ1 þ ynÞ; ynþ1 þ yni ¼ h2afn
; ynþ1 þ yni:
The second term on the left hand side is equal to zero since the operator A is skew-symmetric and, therefore,
hQynþ1; ynþ1i � hQyn; yni ¼ h2afn
; ynþ1 þ yni
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where the self-adjointness of the operator Q 
 B� aA is used.
The last relation allows to prove that the condition
Q 
 B� aA > 0 ðQ is a positively definite matrixÞ
is sufficient for the stability of the scheme.If the matrix Q is a positively definite, then we can define a discrete energy as
Wn
TE=TM ¼ 0:5hQyn; yni ð18Þ
and the discrete energy conservation law holds
Wnþ1
TE=TM �Wn

TE=TM

Ds
¼ �0:5h½en¼1

x þ en
x ; e

nþ1
y þ en

y ; e
nþ0:5
z þ en�0:5

z �; ½jnþ0:5
x ; jnþ0:5

y ; jn
z �i: ð19Þ
The stability condition can be rewritten in the form
Iþ a2Pi
zðP

i�

z Þ > 0; i ¼ 0;1 ð20Þ
The last condition resembles the well-known stability condition of the explicit FDTD scheme for one-dimensional problem.
The maximal eigenvalue ki

max of the discrete operator Pi
zðP

i�
z Þ in staircase approximation of the boundary fulfills the relation
ki
max < 4=Dz2; i ¼ 0;1
and the stability condition reads
Ds 6 Dz: ð21Þ
On an equidistant mesh implicit scheme (16) has a second order local approximation error in homogeneous regions,
OðkD~rk2 þ Ds2Þ, D~r ¼ ðDx;Dy;DzÞT .

It will be shown in Section 4.5 that, with the time step Ds equal to the longitudinal mesh step Dz, scheme (16) does not
have dispersion in the longitudinal direction. Relation (21) does not contain information about the transverse mesh. Hence
the transverse mesh can be chosen independently from stability considerations.

However, this scheme is implicit and non-economical. The economical scheme modifications based on operator splitting
were considered in [1]. In the following we introduce a new explicit scheme with improved dispersion properties in the
transverse plane. Due to its explicit character the new scheme is easy parallelizable.

4.2. Explicit TE/TM scheme in 3D

Operators I� aTi; i ¼ 0;1, can be factorized as
I� aTi ¼ LTi
UTi
� a2Ri;
where LTi
is a low triangular matrix, UTi

is an upper triangular one
LTi
¼

I 0 0
0 I 0

�aðPi
yÞ
� aðPi

xÞ
� I

0
B@

1
CA; UTi

¼
I 0 aPi

y

0 I �aPi
x

0 0 I

0
B@

1
CA
and the splitting operator is defined as
Ri ¼
0 0 0
0 0 0
0 0 ri

0
B@

1
CA; ri ¼ ðPi

yÞ
�ðPi

yÞ þ ðP
i
xÞ
�ðPi

xÞ; i ¼ 0;1:
Hence, operator B can be written as
B ¼ LL þ LTUT � a2R;
where
LL ¼
0 0

2aL� 0

� �
; LT ¼

LT0 0
0 LT1

� �
; UT ¼

UT0 0
0 UT1

� �
; R ¼

R0 0
0 R1

� �
:

Neglecting the term a2R of the order O(Ds2) the implicit scheme (16) can be reduced to the explicit one
Be ynþ1 � yn

Ds
þ Ayn ¼ fn

; Be ¼ LL þ LTUT: ð22Þ
The following relations hold:
A ¼ �A�; Q e ¼ Q e� ; Q e ¼ Be � aA:
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On equidistant mesh explicit scheme (22) has a second order local approximation error in homogeneous regions,
OðkD~rk2 þ Ds2Þ, D~r ¼ ðDx;Dy;DzÞT .

The explicit scheme can be rewritten as
LT0 UT0

unþ0:5 � un�0:5

Ds
¼ T0un�0:5 þ Lvn � jn

u;

LT1 UT1

vn¼1 � vn

Ds
¼ T1vn � L�unþ0:5 þ jnþ0:5

m ;

unþ0:5 ¼
hnþ0:5

x

hnþ0:5
y

enþ0:5
z

0
BB@

1
CCA; vn ¼

en
x

en
y

hn
z

0
B@

1
CA:
In the original variables and in detailed notation it reads
h
_

n
x ¼ h

_
n�0:5
x þ aMl�1

x
½Pz e

_n
y � Py e

_n�0:5
z �;

h
_

n
y ¼ h

_
n�0:5
y þ aMl�1

y
½�Pz e

_n
x þ Px e

_n�0:5
z �;

e
_nþ0:5

z ¼ e
_n�0:5

z þ 2aMe�1
z
½P�yh

_
n
x � P�xh

_
n
y þ j

_
_

n
z �;

h
_

nþ0:5
x ¼ h

_
n
x þ aMl�1

x
½Pz e

_n
y � Py e

_nþ0:5
z �;

h
_

nþ0:5
y ¼ h

_
n
y þ aMl�1

y
½�Pz e

_n
x þ Px e

_nþ0:5
z �;

e
_nþ0:5

x ¼ e
_n

x þ aMe�1
x
½P�zh

_
nþ0:5
y � P�yh

_
n
z þ j

_
_

nþ0:5
x �;

e
_nþ0:5

y ¼ e
_n

y þ aMe�1
y
½�P�zh

_
nþ0:5
x þ P�xh

_
n
z þ j

_
_

nþ0:5
y �;

hnþ1
z ¼ hn

z þ 2aMl�1
z
½Py e

_nþ0:5
x � Px e

_nþ0:5
y �;

e
_nþ1

x ¼ e
_nþ0:5

x þ aMe�1
x
½P�zh

_
nþ0:5
y � P�yh

_
nþ1
z þ j

_
_

nþ0:5
x �;

e
_nþ1

y ¼ e
_nþ0:5

y þ aMe�1
y
½�P�zh

_
nþ0:5
x þ P�xh

_
nþ1
z þ j

_
_

nþ0:5
y �;
where we have introduced the auxiliary variables h
_

n
x ;h

_
n
y ; e

_
nþ0:5
x ; e

_
nþ0:5
y . Hence we have 10 update equations at each time step

of the same form as in Yee’s scheme and the numerical effort at each time step is scaled as 5/3 compared to Yee’s algorithm.
But it follows from Eq. (24) that the explicit TE/TM scheme allows a larger time step and for the mesh Dx ¼ Dy ¼

ffiffiffi
2
p

Dz the
new scheme requires only �18% more computational time than Yee’s scheme. The memory requirements of the new scheme
are the same as for Yee’s scheme: only one vector for each field component is required.

Finally, we compare the explicit TE/TM scheme with the implicit TE/TM-ADI2 scheme introduced earlier in [1]. Let us as-
sume that the primary grid G has N elements and we are solving for 6N field components. The above described explicit TE/TM
scheme requires 40N addition and 10N multiplications for one full time step. The implicit TE/TM-ADI2 scheme ([1], Eqs. (32)
and (33)) requires these operations and yet additional ones to resolve the linear systems of equations. The ‘‘sweep” algorithm
for three diagonal matrices has to be applied 6 times. The ‘‘sweep” algorithm requires 4N multiplications, 4N additions and
2N divisions. If we assume that the multiplication is two times more expensive than the addition, and the division is 8 times
more expensive, then the explicit algorithm is factor of four faster than the implicit one.

4.3. The explicit TE/TM for rotationally symmetric geometries

For rotationally symmetric cases the Maxwell equations are reduced to equations for azimuthal harmonics. The azimuthal
derivative is taken explicitly and we can use another modified operator
Be;r ¼ Bþ a2Rr;

Rr ¼
Rr

0 0
0 Rr

1

 !
; Rr

i ¼
0 0 0
0 0 0
0 0 rr

i

0
B@

1
CA; rr

i ¼ ðP
i
rÞ
�ðPi

rÞ:
The explicit scheme
Ber ynþ1 � yn

Ds
þ Ayn ¼ fn ð23Þ
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at mode m reads
h
_

n
u ¼ h

_
n�0:5
u þ aMl�1

u
½Pz e

_n
r � Pr e

_n�0:5
z �;

h
_

n
r ¼ h

_
n�0:5
r þ aMl�1

r
½�Pz e

_n
u þme

_n�0:5
z �;

e
_nþ0:5

z ¼ e
_n�0:5

z þ ðIþ a2m2Ml�1
z

Me�1
r
Þ�12aMe�1

z
½P�r h

_
n
u �mh

_
n
r þ j

_
_

n
z �;

h
_

nþ0:5
u ¼ #h

_
n
u þ aMl�1

u
½Pz e

_n
r � Pr e

_nþ0:5
z �;

h
_

nþ0:5
r ¼ #h

_
n
r þ aMl�1

r
½�Pz e

_n
u þme

_nþ0:5
z �;

e
_nþ0:5

u ¼ e
_n

u þ aMe�1
u
½P�zh

_
nþ0:5
r � P�r h

_
n
z þ j

_
_

nþ0:5
u �;

e
_nþ0:5

r ¼ e
_n

r þ aMe�1
r
½�P�zh

_
nþ0:5
u þmh

_
n
z þ j

_
_

nþ0:5
r �;

hnþ1
z ¼ hn

z þ ðIþ a2m2Me�1
z

Ml�1
r
Þ�12aMl�1

z
½Pr e

_nþ0:5
u �me

_nþ0:5
r �;

e
_nþ1

u ¼ # e
_nþ0:5

u þ aMe�1
u
½P�zh

_
nþ0:5
r � P�r h

_
nþ1
z þ j

_
_

nþ0:5
u �;

e
_nþ1

r ¼ # e
_nþ0:5

r þ aMe�1
r
½�P�zh

_
nþ0:5
u þmh

_
nþ1
z þ j

_
_

nþ0:5
r �:
If the material matrices Ml�1 ;Me�1 are diagonal the new scheme is explicit. On an equidistant mesh explicit scheme (23)
has a second order local approximation error in homogeneous regions, OðkD~rk2 þ Ds2Þ;D~r ¼ ðDr;DzÞT .

In order to reach the maximal time step and to avoid non-diagonal material matrices we use the Simplified Conformal
method introduced in [14].

4.4. Energy conservation and stability

Energy conservation and stability condition of the implicit TE/TM scheme (8) were considered above (see [1]). Following
the same way the discrete energy for the explicit TE/TM scheme can be defined by the relation
Wn;e
TE=TM ¼ 0:5hQ eyn; yni; Q e ¼ Be � aA
and a discrete energy conservation law in form (19) holds.The sufficient stability condition of positive definiteness of the
matrix Qe,
Q e > 0
can be rewritten in the form
Iþ a2Pi
zðP

i�

z Þ > 0;

Iþ a2½Pi
xðP

i�

x Þ þ Pi
yðP

i�

y Þ� > 0;

(
i ¼ 0;1:
From consideration of the maximal eigenvalue of the discrete Laplace operator Pi
xðP

i�

x Þ þ Pi
yðP

i�

y Þ it follows that for a vacuum
domain with a staircase approximation of the boundary the stability condition reads
Ds 6 Dz;

Ds 6 ðDx�2 þ Dy�2Þ�0:5
:

	
ð24Þ
For a rotationally symmetric case it reduces to the form
Ds 6 minðDz;DrÞ:
Note that the last stability condition does not include the azimuthal mode number m. For comparison, Yee’s scheme requires
to reduce the stable time step [10]
Ds 6 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1:2þ 0:4m2ÞDr�2 þ 1:2Dz�2

p

for higher azimuthal modes, that increases the computational effort considerably.

4.5. Dispersion relation of the TE/TM scheme

Following the conventional procedure [12] the dispersion relations can be obtained in the form
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sin2 X
Ds2 ¼

sin2 Kz

Dz2 þ sin2 Kx

Dx2 þ sin2 Ky

Dy2

 !
cos2 X
for the implicit TE/TM scheme and in the form
sin2 X
Ds2 ¼

sin2 Kz

Dz2 þ sin2 Kx

Dx2 þ sin2 Ky

Dy2

 !
1� Ds2

Dz2 sin2 Kz

� �
ð25Þ
for the explicit one. Here X = 0.5xDs/c, Kx = 0.5kxDx, Ky = 0.5kyDy, Kz = 0.5kzDz.
With the ‘‘magic” time step Ds = Dz both schemes do not have dispersion in the longitudinal direction.
The explicit scheme can have yet two directions in the transverse XY plane with zero dispersion. Indeed for equal trans-

verse mesh steps
Dx ¼ Dy ¼ h;
the dispersion relation for transverse plane waves (Kz = 0) reads
sin2 X ¼ Ds2

h2 ðsin2 Kx þ sin2 KyÞ
and has the same form as the dispersion relation for 2D Yee’s scheme.
For the implicit scheme the dispersion relation for transverse waves reads
tan2 X ¼ Ds2

h2 ðsin2 Kx þ sin2 KyÞ:
Fig. 2 shows the dispersion curves in the transverse plane for the time step Ds ¼ h=
ffiffiffi
2
p

and for different mesh resolutions
Nk ¼ k=h, where k is the wave length.

The dispersion relation (25) means that Eq. (24) is a necessary stability condition for the explicit TE/TM scheme (22).

4.6. Charge conservation

In this section we consider a discrete analogue of the charge conservation law (2). Let us introduce a discrete divergence
matrix
S ¼
S11 S12

S21 S22

� �



Ph
x Ph

y 0

0 0 Pe
z

0 0 Ph
z

Pe
x Pe

y 0

 !
and multiply Eq. (22) with it. We obtain
SB
ynþ1 � yn

Ds
¼ Sfn

; ð26Þ
where the equality SA = 0 was used. The last equation can be considered as a charge conservation law for the discrete charge
qn = SByn . However, the matrix product
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Fig. 2. Comparison of the dispersion curves in the transverse plane.
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SB ¼
S11 S12ðI� aT0Þ

S21ðIþ aT1Þ S22

� �
differs from matrix S by terms of the order O(Ds). Hence relation (26) is only a first order approximation of the continuity
equation (2). In the following we will show that a second order approximation of the continuity equation (2) holds.Let us
introduce new field and current vectors
zn ¼ unþ0:5

vn

 !
; �fn ¼

jnþ1
u

jnþ0:5
v

 !
and rewrite the scheme (22) in the form
ð�BeÞ� znþ1 � zn

Ds
þ Azn ¼ �fn: ð27Þ
Let us build two sums of Eqs. (22) and (27)
Be ynþ1 � yn

Ds
� ðBeÞ� znþ1 � zn

Ds
þ Aðyn þ znÞ ¼ fn þ �fn; ð28Þ

Be ynþ1 � yn

Ds
� ðBeÞ� zn � zn�1

Ds
þ Aðyn þ zn�1Þ ¼ fn þ �fn�1: ð29Þ
If we apply the operator S to these equations and use the equality
Be � ðBeÞ ¼ 2Iþ 2aAþ a2R;
then we obtain
SðIþ a2RÞ
Ds

unþ1:5 þ unþ0:5

2vnþ1

 !
� unþ0:5 þ un�0:5

2vn

 !" #
� a

Ds
0

S21T0ðunþ1:5 � 2unþ0:5 þ un�0:5Þ

� �
¼ Sðfn þ �fnÞ; ð30Þ

SðIþ a2RÞ
Ds

2unþ0:5

vnþ1 þ vn

 !
� 2un�0:5

vn þ vn�1

 !" #
� a

Ds
S12T1ðvnþ1 � 2vn þ vn�1Þ

0

 !
¼ Sðfn þ �fn�1Þ: ð31Þ
The first row of the matrix in Eq. (30) gives
�qnþ1
h � �qn

h

Ds
¼ 0;

�qn
h ¼ Ph

x
hnþ0:5

x þ hn�0:5
x

2
þ Ph

y

hnþ0:5
y þ hn�0:5

y

2
þ Ph

z ðIþ a2r1Þhn
z :

ð32Þ
The second row of the matrix in Eq. (31) gives
�qnþ0:5
e � �qn�0:5

e

Ds
þ Se

�jn ¼ 0;

�qnþ0:5
e ¼ Pe

x
enþ1

x þ en
x

2
þ Pe

y

enþ1
y þ en

y

2
þ ðIþ a2r0ÞPe

zenþ0:5
z ;

�jn ¼ ½0:5ðjnþ0:5
x þ jn�0:5

x Þ;0:5ðjnþ0:5
y þ jn�0:5

y Þ; jn
z �

T
:

ð33Þ
Eq. (33) is a second order approximation of the continuity equation (2).
5. Numerical tests

The advantage of the implicit TE/TM compared to Yee’s scheme was shown in [1]. Hence here we only show that the ex-
plicit scheme gives equally accurate results.

Our first example is a transverse deflecting structure (TDS) to be used in a new Free Electron Laser project at Deutsches
Elektronen Synchrotron [15]. The geometry dimensions of TDS in rotationally symmetric approximation are given in Fig. 3.
For the Gaussian bunch with RMS width r = 300 lm we have calculated a dipole transverse wake potential [13]
W1
?ðsÞ ¼ jW

1
?ðs; r; h ¼ 0Þjr�1; W1

?ðs; r; hÞ ¼
1
Q

Z 1

�1
½E1
? þ ð~c � B1Þ?�t¼ðzþsÞ=vdz
with the implicit (16) and the explicit (22) schemes for rotationally symmetric structures.
Fig. 4 shows a comparison of the results. We have repeated the calculation with the implicit method on a fine mesh (r/

Dz = r/Dr = 10) and compared the result with the results obtained by the explicit and the implicit schemes on the coarse
mesh (r/Dz = r/Dr = 5). Fig. 4 on the right shows the relative error
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d ¼ jWcoarse
k �Wfine

k j=ðmax Wfine
k �min Wfine

k Þ � 100%
between the wakes calculated with the implicit TE/TM scheme (16) on the fine mesh and the wakes calculated with the ex-
plicit (22) and implicit (16) TE/TM schemes on the coarse mesh.

As a next example we consider a structure consisting of 20 TESLA cells (see [15] for the exact geometry of the cavity cell)
bounded by infinite ingoing and outgoing pipes with 35 mm diameter. We use the explicit three dimensional scheme (22) for
this example.Fig. 5 shows the longitudinal wake potential [13]
Wkðs; x; yÞ ¼ �
1
Q

Z 1

�1
½Ezðx; y; z; tÞ�t¼ðzþsÞ=vdz
for a Gaussian bunch with an RMS length of r = 1 mm moving on axis. The solid line (POT-2.5D) corresponds to the accurate
reference solution obtained with the vector potential method [5] on a very fine mesh (r/Dz = r/Dr = 40). The two other lines
show results obtained with different mesh resolutions (r/Dz = r/Dr = 5 and r/Dz = r/Dr = 10) from the TBCI code [16], based
on the classical Yee’s scheme (E/M-2.5D). The oscillations that appear are due to the dispersion error of Yee’s scheme. The
gray points represent the result obtained by the implicit three dimensional scheme (16) (marked as TE/TM-3D) on a very
coarse mesh (r/Dz = 2.5, r/Dx = r/Dx = 5/6) .We have repeated the calculation with the explicit method (22) and compared
the result with the accurate reference 2D simulation result (POT-2.5D). Fig. 6 shows the relative error
d ¼ jW2D
k �W3D

k j=ðmax W2D
k �min W2D

k Þ � 100%
between the wakes calculated with 2D scheme (POT-2.5D) on a very fine mesh (r/Dz = r/Dr = 40) and the wakes calculated
with 3D TE/TM schemes (16), (22) on the coarse mesh (r/Dz = 2.5, r/Dx = r/Dx = 5/6). The error curves for both schemes
have the same amplitude. The difference in the shapes of the error curves is due to the difference of the discrete operators
in the explicit and the implicit schemes.

It can be seen that the explicit three dimensional TE/TM scheme produces equally accurate results as the earlier intro-
duced implicit TE/TM scheme. The explicit TE/TM scheme does not suffer from the numerical dispersion and the mesh
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can be chosen quite coarse. Indeed, the three dimensional code uses only 2.5 mesh points per r in the longitudinal direction.
In the transverse direction the mesh steps are even three times larger.
6. Conclusion

An explicit scheme for the calculation of electromagnetic fields in the vicinity of relativistic charged bunches was intro-
duced. As shown by several numerical examples the scheme is able to model curved boundaries with a high accuracy and
allows for a non-deteriorating calculation of the field solution for very long simulation times. Due to its explicit character the
new scheme is faster than the earlier introduced implicit one and it can be easily parallelized.
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